CGALIB 2

@%@%@%ﬁ%ﬁ%ﬁ@'%
m%mﬁﬁﬁﬁﬁﬁﬁﬁﬁ%mﬁﬁ
e

L L
.

e
220

%%

%%&%'%@~ i
%@%@%ﬁ%@@@§<
QLOOC e

CYNINGSTAN

Contents

9

Introduction

Licence

Binary Package Contents
Source Package Contents
Building a Project with CGALIB
Rebuilding CGALIB

Modules

Summary of Functions

The Screen Module

10 The Bitmap Module

11 The Font Module

12 The Keyboard Module

13 The Speaker Module

11
13
15
17
21
37
47
55
61

2 CONTENTS

14 The Effect Module 65
15 The Tune Module 71
16 The Demonstration Game 79
17 The Asset Generation Utilities 81
18 Linux Compilation 91

19 Possible Future Developments 93

Chapter 1

Introduction

CGALIB provides a fast graphics library for 320x200 graphics on a CGA
card, along with sound and keyboard routines for a typical XT-class PC,
for use with OpenWatcom C. Features provided by the library include:

Full use of all CGA palettes in 320x200 mode.
Emulation of those palettes on EGA and VGA.

Emulation of 320x200 mode in 640x200 for monochrome de-
vices.

Variable sized text with a selection of 4x8 fonts.
Drawing directly to the screen or to an off-screen bitmap.
Keyboard reading for an 83/84 key keyboard.

Sound effects and music for the PC speaker.

CGALIBis intended primarily for turn-based games like adventures,
puzzles and strategy games. For speed, it does not offer pixel perfect
positioning but divides the screen into a grid of 80 by 200 cells. Bitmaps

4 CHAPTER 1. INTRODUCTION

need to be a multiple of 4 pixels by 1 pixel to fit into this grid. Coordi-
nates are by the pixel, but those coordinates need to be divisible by
these values.

Action games are still possible, and can be achieved by sprite ro-
tation, but CGALIB might not be the most appropriate library for such
projects.

Chapter 2

Licence

This library, its associated programs and utilities, and its documentation
have been released into the public domain by its author Damian Gareth
Walker.

CHAPTER 2. LICENCE

Chapter 3

Binary Package Contents

The CGALIB binary package for Watcom C contains the following di-
rectory structure and files:

+ CGALIB) is the main directory

DEMO. EXE is the demonstration program
MAKEBIT.EXE is the bitmap maker utility
MAKEFONT . EXE is the font maker utility
MAKETUNE. EXE is the music maker utility
MAKEFX.EXE is the sound effect maker utility
CGALIB.LIB is the large model library

BIT\ contains some supplied bitmaps

= DEMO.BIT are the bitmaps for the demo game

« MAKEBIT.BIT are the bitmaps for the bitmap maker

= MAKEFONT.BIT are the bitmaps for the font maker

» MAKEFX.BIT are the bitmaps for the sound effect maker

FNT\ contains the supplied fonts

CHAPTER 3. BINARY PACKAGE CONTENTS

« PAST.FNT is a medieval style font
= PRESENT.FNT is a regular font
« FUTURE.FNT is a sci-fi inspired font

= MAKETUNE.FNT is the font used by the music maker util-
ity. It is a modified version of PRESENT.FNT, with the
dollar sign replaced by the musical flat sign

— INC\ contains the C headers

Chapter 4

Source Package Contents

The CGALIB source package for Watcom C contains the following di-
rectory structure and files:

* cgalib) is the destination directory for binaries and data

« inc) is the include directory

bitmap.h is the header file for the bitmap module
cgalib.h is the main header file

cga_x11.his the X11 header file

effect.h is the sound effect header

font.h is the header file for the font module
keyboard.h is the keyboard header file
screen.h is the header file for the screen module

screen_u.h is the header for joint X11/DOS screen func-
tions

speaker.h is the speaker header
tune.h is the tune header

10

CHAPTER 4. SOURCE PACKAGE CONTENTS

* obj)\ is the directory for compiled object files

« src) is the source code directory

bitmap. c is the bitmap module source
cga_x11.cis the X11 development source
demo . c is the demonstration program source

effect.c is the sound effects source

effect_x.c is the dummy X11 sound effect source

font.c is the font module source

fxdemo. c is the sound effects demo source
keyboard. c is the keyboard source for DOS
keybrd_x.c is the keyboard source for X11
makebit.c is the bitmap maker utility source
makefont.c is the font maker utility source
maketune. c is the tune maker utility source
playback. c is the tune player utility source
screen. c is the screen module source
screen_c.c is the CGA screen hardware source
screen_x.c is the X11 screen source
speaker. c is the speaker handler source
tune. c is the tune module source

tune_x.c is the dummy X11 tune module source

» makefile.gcc is the makefile to build for X11

» makefile.gcc is the makefile to build for DOS

Chapter 5

Building a Project with
CGALIB

To use CGALIB's functions in your project, you need to do the following
two things. Firstly, you need to include the cgalib.h header in your
own project’s source:

#include "cgalib.h"

This automatically includes the individual headers for the CGALIB mod-
ules. You can copy those headers into your project’s header directory,
but a better idea is to add CGALIB's include folder to your include path
on compilation, like this:

C:\PROJECT\> wcc project.c -I=\cgalib\inc

This assumes that CGALIB is installed in a directory called \cgalib.
When you link your object file into an executable, you need to link it
with the cgalib.lib file:

C:\PROJECT\> wcl project.obj \cgalib\cgalib.lib

12

CHAPTER 5. BUILDING A PROJECT WITH CGALIB

Chapter 6

Rebuilding CGALIB

You might want to rebuild CGALIB from its sources, particularly if your
project uses a memory model other than the default Large (ml), if
you’'ve made a customised version of it, or of its utilities or its demon-
stration program. A makefile is provided to simplify this process. If
you unpacked the source files into the \ cgasrc directory, then you can
build the project like this:

C:\CGASRC\> wmake -f makefile.wcc

This builds the LIB file for the large memory model, and stores it in
the \cgasrc\cgalib directory. It also builds the demonstration pro-
gram and the utilities against the small model library file, and stores
their executables in the \cgasrc\cgalib directory. It copies the
header files into the \cgasrc\cgalib\inc directory, and also copies
the supplied font and bitmap files into the relevant directories under
\cgasrc\cgalib.

The result of this is that the \cgasrc\cgalib directory contains
all of the files you would expect in the \cgalib directory of a binary
distribution of CGALIB.

If your project uses a memory model other than large, then rebuild
instead with a command like the following:

14 CHAPTER 6. REBUILDING CGALIB

C:\CGASRC\> wmake -f makefile.wcc MODEL=ml

Valid values are ms for small, mc for compact, mm for medium, ml for
large, and mh for huge.

Chapter 7

Modules

CGALIB has the following modules:
* the Screen module,
+ the Bitmap module,
+ the Font module,

+ the Keyboard module,

the Speaker modules, comprising:

— the Effect module,
— the Tune module.

The Screen module handles hardware screen issues like setting the
video mode and the palette. It also handles drawing directly to the
screen, and extracting bitmaps directly from the screen.

The Bitmap module handles the manipulation of bitmaps: their cre-
ation and destruction, copying them in full or in part, drawing to them,
and loading and storing them in files.

16 CHAPTER 7. MODULES

The Font module handles the use of fonts. It supports creating,
copying and destroying them, and defining their character patterns by
copying individual characters to and from bitmaps. It also has some
manipulation (changing a font’s colour) and allows loading and storing
them in files.

The Keyboard module handles keyboard input. It supports individ-
ual tracking of the up or down state on any key on the keyboard via
their scan codes, along with simpler ASCII input.

The Effect module handles sound effects using the PC speaker. It
supports tone changes up, down or at random, repetition, and silences,
making it easy to create noises like laser zaps and white noise.

The Tune module handles the playing of music using the PC
speaker. It can simulate multiple voices using arpeggios, chords be-
ing played by a quick succession of short notes.

Chapter 8

Summary of Functions

The summary of functions below gives the literal declarations of the
functions as found in the .h file. Some of them are wrapped in a struc-
ture, so that their call syntax resembles calls to object-oriented meth-
ods. The call syntax is made more obvious in the following reference
chapters, which expand upon each of these functions with examples.

Screen Module

Screen *new_Screen (int mode, int show);
struct screen {
void (*destroy) (Screen *screen);
int (*write) (Screen *screen, int format,
FILE *output);
int (*read) (Screen *screen, int format,
FILE *input);
void (*show) (Screen *screen);
void (*hide) (Screen *screen);
int (*shown) (Screen *screen);
void (*update) (Screen *screen);

18

CHAPTER 8. SUMMARY OF FUNCTIONS

void (*palette) (Screen *screen, int foreground,
int background) ;

Bitmap *(*get) (Screen *screemn, int x, int y,
int w, int h);

void (*put) (Screen *screen, Bitmap *source,
int x, int y, int mode);

void (*transfer) (Screen *screen, Bitmap *bitmap,
int xd, int yd, int xs, int ys, int w, int h,
int draw);

void (*box) (Screen *screemn, int x, int y, int width,
int height, unsigned int pattern);

void (*print) (Screen *screemn, int x, int y,
char *message);

Bitmap Module

Bitmap *new_Bitmap (int width, int height);
Bitmap *read_Bitmap (FILE *input);
struct bitmap {

void (*destroy) (Bitmap *bitmap);

Bitmap *(*clone) (Bitmap *bitmap);

int (*write) (Bitmap *bitmap, FILE *output);

Bitmap *(*get) (Bitmap *bitmap, int x, int y,
int w, int h);

void (*put) (Bitmap *bitmap, Bitmap *source,
int x, int y, int mode);

void (*transfer) (Bitmap *bitmap, Bitmap *source,
int xd, int yd, int xs, int ys, int w, int h,
int draw);

void (*box) (Bitmap *bitmap, int x, int y,
int width, int height, unsigned int pattern);

void (*print) (Bitmap *bitmap, int x, int vy,
char *message);

19

}s;

Font Module

Font *new_Font (int first, int last, int width, int height);
Font *read_Font (FILE *input, int version);
struct font {
void (*destroy) (Font *font);
Font *(*clone) (Font *font);
int (*write) (Font *font, FILE *output);
void (*put) (Font *font, Bitmap *bitmap,
int code);
Bitmap *(*get) (Font *font, int code);
void (*recolour) (Font *font, int ink,
int paper);
};

Keyboard Module

KeyHandler #*new_KeyHandler (void);
struct keyhandler {

void (*destroy) (void);

int (*key) (int scancode);

int (*anykey) (void);

int (*ascii) (void);

int (*scancode) (void);

void (*wait) (void);

};

Speaker Module

Speaker *get_Speaker (void);

20 CHAPTER 8. SUMMARY OF FUNCTIONS

struct speaker {
void (*destroy) (void);
int (*writeint) (int #*value, FILE *output);
int (*readint) (int *value, FILE *input);

};

Effect Module

Effect *new_Effect (void);

struct effect {

void (*destroy) (Effect *effect);

int (*read) (Effect *effect, FILE *input);
int (*write) (Effect *effect, FILE *output);
void (*play) (Effect *effect);

}s;

Tune Module

Tune *new_Tune (void);
Note *new_Note (int pitch, int duration);
struct tune {
void (*destroy) (Tune *tune);
void (*add) (Tune *tune, Note *note);
int (*#read) (Tune *tune, FILE *input);
int (*write) (Tune *tune, FILE *output);
void (*play) (Tune *tune, KeyHandler xkeys);

Chapter 9

The Screen Module

Most of the screen functions are accessed through a function pointer
in the Screen structure. The exception is the function that creates the
structure: new_Screen.

X coordinates and widths in the screen functions must be divisible
by 4. This is for speed: with 2-bit CGA graphics the byte boundaries
are on every fourth pixel. Allowing arbitrary X coordinates would ne-
cessitate bit rotation and slow the library down.

9.1 new_Screen

Declaration:
Screen *new_Screen (int mode, int show);
Example:

/* initialise a screen in mode 4 (320x200 colour) */
Screen *screen;

screen = new_Screen (CGALIB_MEDIUM, CGALIB_SHOWN);
/* ... do things with the screen ... */
screen->destroy (screen);

22 CHAPTER 9. THE SCREEN MODULE

This sets the video mode and initialises various internal screen vari-
ables. The mode parameter sets the initial screen mode. The screen
modes are as follows:

* CGALIB_MEDIUM: this is the standard 320x200 4-colour mode.
Upon initialisation, the palette will be set to light cyan, magenta
and white with a black background.

* CGALIB_MEDIUM_MONO: this is the 320x200 "monochrome" mode.
On a monochrome or composite monitor this will provide four
grey scales. On an RGB colour monitor it will have a cyan, red
and white palette, with both intensities available. Upon initialisa-
tion, the light palette is chosen with a black background.

* CGALIB_HIGH: this is the 640x200 high resolution mode. CGALIB
will treat this as a 320x200 screen, using 320x200 coordinates
and rendering graphics in dithered monochrome. It is useful
for portable devices with murky monochrome screens that may
not show the more interesting colour choices clearly. Palette
changes are ignored in this mode.

The show parameter determines whether the screen is shown on cre-
ation. It is possible to have multiple screens in existence at once. When
using this facility, it might be desirable to create a screen but not imme-
diately show it. The values for show are:

* CGALIB_HIDDEN: the screen is hidden. If another CGA screen
is already shown, that screen remains visible. Otherwise, the
screen remains in its default text mode.

» CGALIB_SHOWN: the screen is shown immediately. The graphics
mode is set to whatever mode was requested (but see Hercules
notes below) and the screen is cleared.

If a Hercules graphics card is detected, the mode parameter is ignored,
and the screen is set to Hercules graphics mode. This emulates the
CGALIB_HIGH mode, with 640x200 monochrome graphics scaled and
centred on the 720x348 Hercules graphics screen.

9.2. SCREEN->DESTROY 23

9.2 screen->destroy

Declaration:

struct screen {
void (*destroy) (Screen *screen);

}
Example:

/* Simple screen lifecycle */

Screen *screen;

screen = new_Screen (CGALIB_MEDIUM, CGALIB_SHOWN);
/* ... do things with the screen ... */
screen->destroy (screen);

Destroys a screen when it is no longer needed. If the screen was
shown at the time of destruction, the screen will be cleared and re-
turned to 80 column text mode. The screen parameter is a pointer to
the screen structure.

9.3 screen->write

Declaration:

struct screen {
int (*write) (Screen *screen, int format,
FILE *output);
}

Example:

/* convert a BSAVE file to a bitmap */
FILE *input, *output;

Screen *screen;

input = fopen ("screen.pic", "rb");
output = fopen ("screen.bit", "wb");

24 CHAPTER 9. THE SCREEN MODULE

screen = new_Screen (CGALIB_MEDIUM, CGALIB_HIDDEN) ;
screen->read (screen, CGALIB_SCREEN_FORMAT, input);
screen->write (screen, CGALIB_BITMAP_FORMAT, output);
fclose (output);

fclose (input);

Writes the data from a screen to a file, either in BSAVE format, or in
the form of a CGALIB bitmap. The screen parameter is a pointer to the
screen structure. The format is one of the following:

* CGALIB_BITMAP_FILE: the data was saved in the form of a
320x200 bitmap.

* CGALIB_SCREEN_FILE: the data was saved in BSAVE format,
consisting of a 7-byte header followed by a byte-for-byte copy
of the contents of screen menory. These files can be created
and read by packages like PC Paint.

The output parameter is the output file handle. The function leaves
the opening and closing of files to you, in order that you can combine
screens, bitmaps and other data into a single asset file if desired.

9.4 screen->read

Declaration:

struct screen {
int (*read) (Screen *screen, int format,
FILE *input);
}

Example:

/* load a BSAVE pic file from PC Paint */
FILE *input;
Screen *screen;

9.5. SCREEN->SHOW 25

screen = new_Screen (CGALIB_MEDIUM, CGALIB_HIDDEN) ;
input = fopen("screen.pic", "rb");

screen->read (screen, CGALIB_SCREEN_FILE, input);
fclose (input);

/* ... do things with the screen ... */
screen->destroy (screen);

This reads screen data from an already open input file. The format is
one of the following:

* CGALIB_BITMAP_FILE: the data was saved in the form of a
320x200 bitmap.

* CGALIB_SCREEN_FILE: the data was saved in BSAVE format,
consisting of a 7-byte header followed by a byte-for-byte copy
of the contents of screen menory. These files can be created
and read by packages like PC Paint.

The input parameter is the file handle of a previously opened input
file. Using a file handle rather than a filename allows your screen data
to be saved on its own or as part of a larger asset file.

9.5 screen->show

Declaration:

struct screen {
void (*show) (Screen *screen);

}
Example:

Screen *map, *status;

map = new_Screen (CGALIB_MEDIUM, CGALIB_HIDDEN);
status = new_Screen (CGALIB_MEDIUM, CGALIB_HIDDEN) ;
/* ... build up both screens ... */

26 CHAPTER 9. THE SCREEN MODULE

map->show (map) ;

/* ... do things on the map interface ... */
map->show (status);
/* ... do things on the status interface ... */

screen->destroy (map);
screen->destroy (status);

This makes the specified screen visible. CGALIB allows for multiple
screens to be held in memory at once. Note that this can be memory
intensive, and is recommended only when multiple user interfaces have
to be kept up to date, e.g. a strategic map and a tactical map or unit list
in a strategy game.

9.6 screen->hide

Declaration:

struct screen {
void (*hide) (Screen *screen);

}
Example:

Screen *game;

game = new_Screen (CGALIB_MEDIUM, CGALIB_SHOWN);
/* ... %/

game->hide (game);

/* ... %/

game->destroy (game);

If the specified screen is currently visible, it will be hidden and the text
mode screen will be shown instead. If the specified screen is not cur-
rently visible, this call will have no effect. This method and screen-
>show() above might be useful if your program wants to switch between
graphics and text modes.

9.7. SCREEN->SHOWN 27

9.7 screen->shown

Declaration:

struct screen {
int (*shown) (Screen *screen);

}
Example:

Screen *screen;
/* ... %/
if (screen->shown (screen)) {
/* some animation on screen */

3

Returns TRUE (or CGALIB_SHOWN) if the specified screen is cur-
rently visible. Returns FALSE (or CGALIB_HIDDEN) if the specified
screen is currently hidden. This is useful for cases like the example
given: maybe you want show a particular animation but not if the screen
is not currently shown.

9.8 screen->update

Declaration:

struct screen {
void (*update) (Screen *screen);

}
Example:

Screen *screen;

screen = new_Screen (CGALIB_MEDIUM, CGALIB_SHOWN);
screen->updates = 1;

/* ... draw onto screen ... */

screen->update (screen);

28 CHAPTER 9. THE SCREEN MODULE

When graphical operations are applied to a screen, such as put, trans-
fer, box or print, the results do not appear immediately, even if the
screen is currently shown. Instead they get written to a back buffer, and
only transferred to video memory when the update() method is called.
This allows a number of drawing operations to be performed, and the
result transferred to the screen all at once, increasing the perceived
speed of drawing.

There is an attribute called screen->updates, which can be set to
the following values:

» screen->updates = 0;: update the screen immediately on ev-
ery drawing operation; no calls to screen->update are necessary.

* screen->updates = 1;: screen->update will copy a single po-
tentially large rectangle from the back buffer to video memory,
encompassing all drawing operations that have been performed
since the last screen->update on this screen.

* screen->updates = n /* 2 or more */;: up to n drawing
operations are remembered individually, and copied one by one
to video memory on a call to screen->update. If more than n
drawing operations are performed, the surplus operations are
combined and copied as one potentially large rectangle.

The default when a new screen is created is 0. 1 is recommended if
you might have a large number of drawing operations in one area of the
screen, for example, building up a map from tiles. 2 is recommended
if your screen updates tend to be small and scattered, like a status
display in a text based game.

9.9 screen->palette

Declaration:

struct screen {

9.9. SCREEN->PALETTE 29

void (xpalette) (Screen *screen,
int foreground, int background) ;

}
Example:

Screen *screen;
screen = new_Screen (CGALIB_MEDIUM, CGALIB_SHOWN) ;
screen->palette (screen,
CGALIB_GREEN_RED_BROWN,
CGALIB_LIGHT_CYAN) ;
/* ... %/

Sets the CGA palette for the screen. The six foreground palettes can
be referred to by the number 0..5, or by one of these six enumerated
constants:

0. CGALIB_GREEN_RED_BROWN

1. CGALIB_CYAN_MAGENTA_WHITE
CGALIB_CYAN_RED_WHITE
CGALIB_LIGHT_GREEN_RED_YELLOW

CGALIB_LIGHT_CYAN_MAGENTA_WHITE

a &> D

CGALIB_LIGHT_CYAN_RED_WHITE

The background colour can be specified by a number 0..15 from the
standard CGA palette, or by one of the following enumerated constants:

0. CGALIB_BLACK
1. CGALIB_BLUE
2. CGALIB_GREEN

3. CGALIB_CYAN

30

1

11,
12,
13.
14,

15

© © © N o 0 >

CHAPTER 9.

CGALIB_RED
CGALIB_MAGENTA
CGALIB_BROWN
CGALIB_WHITE
CGALIB_GREY
CGALIB_LIGHT_BLUE
CGALIB_LIGHT_GREEN
CGALIB_LIGHT_CYAN
CGALIB_LIGHT_RED
CGALIB_LIGHT_MAGENTA
CGALIB_YELLOW

CGALIB_WHITE_HIGH

THE SCREEN MODULE

CGALIB is EGA-aware, and after setting the CGA palette registers it will
use EGA BIOS calls to ensure that EGA and later video hardware sets
the correct palette. If the screen was initialised to CGALIB_HIGH or
Hercules monochrome graphics mode, palette changes will be ignored.

9.10 screen->get

Declaration:

struct screen {
Bitmap *(*get) (Screen *screen, int x, int y,

}

int w, int h);

Example:

9.11. SCREEN->PUT 31

Screen *screen;

Bitmap *bitmap;

/* ... initialise screen ... */

bitmap = screen->get (screen, 152, 92, 16, 16);
/* ... x/

Extracts an area of pixels from the specified screen and returns them
as a new bitmap. The area extracted will have its top left at x, y, having
a width of w pixels and a height of h. The bitmap will be created by
screen->get and should not be initialised by new_Bitmap beforehand.

9.11 screen->put

Declaration:

struct screen {
void (*put) (Screen *screen, Bitmap *source,
int x, int y, int mode);

}
Example:

Screen *screen;
Bitmap *bitmap;
int x;
/* ... initialise and draw screen ... */
bitmap = screen->get (screen, 0, 0, 16, 16);
for (x 0; x < 320; x += 16)
screen->put (screen, bitmap, x, O, CGALIB_SET);
/* ... %/

Draws a bitmap onto the specified screen. The bitmap will be drawn at
location x, y, and the drawing mode will be one of the following:

* CGALIB_SET: Every pixel in the bitmap, from edge to edge, will
be written to the screen, obliterating what was there before. This
is useful for filling an area with background tiles.

32

CHAPTER 9. THE SCREEN MODULE

CGALIB_RESET: The inverse colour of every pixel in the bitmap,
from edge to edge, will be written to the screen, obliterating what
was there before.

CGALIB_AND: The pixels of the bitmap will be ANDed with what
is already on the screen. This is useful to apply a sprite mask to
whatever is on the screen, before drawing the sprite.

CGALIB_OR: The pixels of the bitmap will be ORed with what is
already on the screen. This is useful to draw a sprite against
a background, especially after a sprite mask has already been
applied.

CGALIB_XOR: The pixels of the bitmap will be exclusive-ORed
with what is already on the screen. This is a cheap way of mov-
ing sprites around a background: one XOR operation to draw the
sprite, and another XOR at the same location to remove it.

Since the X coordinate must be a multiple of 4, smooth sprite move-
ment requires pre-drawn rotated sprites for the intervening sprite po-
sitions. CGALIB is probably not fast enough for action games on a
typical CGA PC with an 8088 processor, but sprite-style operations are
still useful for things like characters in an RPG location, chess pieces
on an ornate board, or units on a strategic map.

9.12 screen->transfer

Declaration:

struct screen {

3

void (*transfer) (Screen *screen,
Bitmap *bitmap, int xd, int yd, int xs,
int ys, int w, int h, int draw);

Example:

9.13. SCREEN->BOX 33

Screen *screen;
Bitmap *sprites, *masks;
screen = new_Screen (CGALIB_MEDIUM, CGALIB_SHOWN) ;
/* ... initialise screen background ... */
sprites = new_Bitmap (160, 16);
masks = new_Bitmap (160, 16);
/* ... initialise sprite and mask sheets ... */
screen->transfer (screen, masks, 152, 92, 32, O,
16, 16, CGALIB_AND);
screen->transfer (screen, sprites, 152, 92,
32, 0, 16, 16, CGALIB_OR);
VA TN ¥

Transfers part of a bitmap onto the screen. This is useful if you keep
your sprites on a single bitmap that forms a sprite sheet. The example
above draws a sprite from such a sprite sheet. screen->transfer is also
useful for transferring part of a large play area into a smaller window on
the screen, to make a scrolling map. The parameters are as follows:

 screen is the destination screen.

* bitmap is the source bitmap.

» xd, yd are the destination coordinates on the screen to draw to.
* xs, ys are the coordinates in the source bitmap to copy from.

* w, h are the width and height of the area to copy.

* draw is the draw mode: see screen->put for a summary.

9.13 screen->box

Declaration:

34 CHAPTER 9. THE SCREEN MODULE

struct screen {
void (*box) (Screen *screen, int x, int y,
int width, int height, unsigned int pattern);
}

Example:

Screen *screen;
screen = new_Screen (CGALIB_MEDIUM, CGALIB_SHOWN);
screen->box (0, 0, 320, 200, CGALIB_BOX_DITHERED) ;

Draws a box on the specified screen, with the top left at the specified
coordinates, and with the given width and height. The pattern can be
any 16-bit number that defines a bit pattern, every 2 adjacent bits form-
ing one pixel. There are some defined constants for commonly used
patterns:

* CGALIB_BOX_BLANK: a solid box in colour 0, usually the back-
ground colour.

CGALIB_BOX_FILLED: a solid box in colour 3, the main fore-
ground colour.

CGALIB_BOX_DITHERED: a checkerboard pattern of colours 0 and
3.

CGALIB_BOX_VSTRIPED: vertical stripes in colours 0 and 3.

CGALIB_BOX_HSTRIPED: horizontal stripes in colours 0 and 3.

A number of other patterns can be defined, including multicolour
patterns. The 16-bit number defines a 4x2 pixel block that is repeated
over the whole surface of the box. For instance, the pattern value
0x1be4 will create a kaleidoscopic box that contains all four colours.

9.14. SCREEN->PRINT 35

9.14 screen->print

Declaration:

struct screen {
void (xprint) (Screen *screen, int x, int y,
char *message) ;

}
Example:

Screen *screen;

screen = new_Screen (CGALIB_MEDIUM, CGALIB_SHOWN);
screen->font = read_Font ("present.fnt");
screen->print (screen, 144, 96, "Welcome!");

Prints a message on the current screen, in the currently selected font,
at the specified location. The font must be initialised (usually loaded
from disk), and assigned to the screen before printing; there is no de-
fault font.

9.15 Attributes

Some attributes are intended to be modified directly by the developer.
The list of attributes in a screen object are as follows:

» screen->mode: the video mode. This should not be modified.
Some screen parameters are initialised when the screen is cre-
ated, and they will not be updated when this attribute is changed,
causing corrupt screen output or worse.

* screen->foreground: the foreground palette as set by
the screen->palette method. Changing this while the
screen is visible will not change the visible palette; use the
screen->palette method instead.

36

CHAPTER 9. THE SCREEN MODULE

screen->background: the background colour as set by the
screen->palette method. Changing this while the screen
is visible will not change the visible background; use the
screen->palette method instead.

screen->ink: the colour for printing text with screen->print
or for drawing boxes with screen->box. This is intended to be
set directly by the developer before printing or drawing boxes.
Because of the limitations of drawing box patterns at speed, this
should only be changed for box drawing when screen->paper
is 0, The default for screen->ink is 3.

screen->paper: the background colour for a text box created
with screen->print, or for “off” pixels with a box drawn with
screen->box. Because of the limitations of drawing box pat-
terns at speed, this should only be changed for box drawing
when screen->ink is 3, otherwise unpredictable results will oc-
cur. The default for screen->paper is 0.

screen->font: the font to be used for printing text on this
screen. This defaults to NULL, so it must be set to a valid font
before attempting to use screen->print.

Chapter 10

The Bitmap Module

Most of the bitmap functions are accessed through a function pointer in
the Bitmap structure. The exceptions are the functions that create the
structure: new_Bitmap and read_Bitmap.

X coordinates and widths in the bitmap functions must be divisible
by 4. This is for speed: with 2-bit CGA graphics the byte boundaries
are on every fourth pixel. Allowing arbitrary X coordinates would ne-
cessitate bit rotation and slow the library down.

10.1 new_Bitmap

Declaration:
Bitmap *new_Bitmap (int width, int height);
Example:

Bitmap *bitmap;
bitmap = new_Bitmap (16, 16);
This creates a bitmap of the specified size and returns a pointer to it. It

should not be used if the bitmap is to be read from a file; in that case
use read_Bitmap to create the bitmap instead.

38 CHAPTER 10. THE BITMAP MODULE

10.2 read_Bitmap

Declaration:
Bitmap *read_Bitmap (FILE *input);
Example:

Bitmap *bitmaps[16];

FILE *fh;

int c;

fh = fopen ("tiles.bit", "rb");

for (¢ = 0; ¢c < 16; ++c)
bitmaps[c] = read_Bitmap (fh);

fclose (fh);

Creates a bitmap, reads its size and contents from an already open file,
and returns a pointer to that new bitmap. The example above assumes
sixteen bitmaps are stored in the file files.bit, and loads all of them
into an array of bitmaps.

10.3 bitmap->destroy

Declaration:

struct bitmap {
void (*destroy) (Bitmap *bitmap);
}

Example:

Bitmap *bitmap;

bitmap = new_Bitmap (16, 16);
/* ... use bitmap ... */
bitmap->destroy (bitmap);

Destroys a bitmap, freeing the memory that the bitmap took up.
Bitmaps should always be destroyed when no longer needed, to pre-
vent memory leaks.

10.4. BITMAP->CLONE 39

10.4 bitmap->clone

Declaration:

struct bitmap {
Bitmap *(*clone) (Bitmap *bitmap);
}

Example:

Bitmap *bitmap, *copy;
bitmap = new_Bitmap (16, 16);

/* ... make bitmap ... */
copy = bitmap->clone (bitmap);
/* ... use bitmaps ... */

copy->destroy (copy);
bitmap->destroy (bitmap);

Creates a clone of the specified bitmap, and returns a pointer to it. The
clone is an independent copy of the bitmap; modifications made to the
clone do not affect the original bitmap.

10.5 bitmap->write

Declaration:

struct bitmap {
int (*write) (Bitmap *bitmap, FILE *output);
}

Example:

Bitmap *bitmaps[16];
FILE *fh;
int c;
for (c = 0; ¢c < 16; ++c)
bitmaps[c] = new_Bitmap (16, 16);

40 CHAPTER 10. THE BITMAP MODULE

/* ... draw bitmaps ... */

fh = fopen ("tiles.bit", "wb");

for (c = 0; ¢ < 16; ++c)
bitmaps[c]->write (bitmaps[c], fh);

fclose (fh);

for (c = 0; ¢ < 16; ++c)
bitmaps[c]->destroy (bitmapsl[c]l);

Writes a bitmap to an already open file. This is more useful than a
function that writes a bitmap to a named individual file, as most projects
will have multiple bitmaps and will want to combine them into a single
asset file for efficiency of storage.

10.6 bitmap->get

Declaration:

struct bitmap {
Bitmap *(*get) (Bitmap *bitmap, int x, int y, int w, int h);
}

Example:

Bitmap *large, *small;

FILE *fh;

fh = fopen ("large.bit", "rb");

large = read_Bitmap (fh);

fclose (fh);

small = large->get (large, 100, 100, 16, 16);
/* ... use bitmaps ... */

small->destroy (small);

large->destroy (large);

Creates a small bitmap by extracting part of a larger bitmap, of w*h
pixels, from an area whose top left point is x,y. The small bitmap be-
comes a separate independent bitmap, which must be destroyed when
no longer needed.

10.7. BITMAP->PUT 41

10.7 bitmap->put

Declaration:

struct bitmap {
void (*put) (Bitmap *bitmap, Bitmap *source,
int x, int y, int mode);

}
Example:

Bitmap *large, *small;

large = new_Bitmap (144, 144);

small = new_Bitmap (16, 16);

/* ... draw both bitmaps ... */

large->put (large, small, 64, 64, CGALIB_SET);

Draws a small bitmap onto the specified larger bitmap. The small
bitmap will be drawn at location x, y of the larger bitmap, and the draw-
ing mode will be one of the following:

* CGALIB_SET: Every pixel in the smaller bitmap, from edge to
edge, will be written to the larger bitmap, obliterating what was
there before. This is useful for filling an area with background
tiles.

* CGALIB_RESET: The inverse colour of every pixel in the smaller
bitmap, from edge to edge, will be written to the larger bitmap,
obliterating what was there before.

* CGALIB_AND: The pixels of the smaller bitmap will be ANDed
with what is already on the larger bitmap. This is useful to ap-
ply a sprite mask to whatever is on the screen, before drawing
the sprite.

* CGALIB_OR: The pixels of the smaller bitmap will be ORed with
what is already on the larger bitmap. This is useful to draw a
sprite against a background, especially after a sprite mask has
already been applied.

42 CHAPTER 10. THE BITMAP MODULE

* CGALIB_XOR: The pixels of the smaller bitmap will be exclusive-
ORed with what is already on the larger bitmap.

It is no longer necessary, as it was in the original CGALIB, to use a
bitmap to implement a back buffer, as this version’s Screen module
implements a back buffer itself. The functionality is still useful, though.
One might use it to create a large map, a portion of which can be
scrolled around the screen in a map window, as seen in the games
Star Cadre: Combat Class and The Chambers Beneath.

10.8 bitmap->transfer

Declaration:

struct bitmap {
void (*transfer) (Bitmap *bitmap,
Bitmap *source, int xd, int yd, int xs,
int ys, int w, int h, int draw);

}
Example:

Bitmap *dest, *source;

dest = new_Bitmap (144, 144);

source = new_Bitmap (160, 128);

/* ... prepare both bitmaps ... */

dest->transfer (dest, source,
112, 112, /* ...where on dest bitmap */
128, 96, /* ...where on source bitmap */
16, 16, /* size of area to transfer */
CGALIB_SET);

Transfers part of one bitmap onto another bitmap. The functionality was
added in CGALIB1 where the developer had to implement a backbuffer
on their own using bitmaps, but there are still uses for it now. The
parameters are as follows:

10.9. BITMAP->BOX 43

* bitmap is the destination bitmap.

* bitmap is the source bitmap.

» xd, yd are the coordinates on the destination bitmap to draw to.
* xs, ys are the coordinates in the source bitmap to copy from.

* w, h are the width and height of the area to copy.

* draw is the draw mode: see bitmap->put for a summary.

10.9 bitmap->box

Declaration:

struct bitmap {
void (*box) (Bitmap *bitmap, int x, int y,
int width, int height, unsigned int pattern);
}

Example:

Bitmap *bitmap;
bitmap = new_Bitmap (160, 160);
bitmap->box (0, 0, 160, 160, CGALIB_BOX_BLANK);

Draws a box on the specified bitmap, with the top left at the specified
coordinates, and with the given width and height. The pattern can be
any 16-bit number that defines a bit pattern, every 2 adjacent bits form-
ing one pixel. There are some defined constants for commonly used
patterns:

* CGALIB_BOX_BLANK: a solid box in colour 0, usually the back-
ground colour.

e CGALIB_BOX_FILLED: a solid box in colour 3, the main fore-
ground colour.

44 CHAPTER 10. THE BITMAP MODULE

+ CGALIB_BOX_DITHERED: a checkerboard pattern of colours 0 and
3.

* CGALIB_BOX_VSTRIPED: vertical stripes in colours 0 and 3.
* CGALIB_BOX_HSTRIPED: horizontal stripes in colours 0 and 3.

A number of other patterns can be defined, including multicolour
patterns. The 16-bit number defines a 4x2 pixel block that is repeated
over the whole surface of the box. For instance, the pattern value
0x1be4 will create a kaleidoscopic box that contains all four colours.

10.10 bitmap->print

Declaration:

struct bitmap {
void (*print) (Bitmap *bitmap, int x, int vy,
char *message) ;

}
Example:

Bitmap *bitmap;

bitmap = new_Bitmap (144, 144);
bitmap->font = read_Font ("present.fnt");
bitmap->print (bitmap, 56, 68, "Welcome!");

Prints a message on the specified bitmap, in the currently selected font,
at the specified location. The font must be initialised (usually loaded
from disk), and assigned to the bitmap before printing; there is no de-
fault font.

10.11 Attributes

Some attributes are intended to be modified directly by the developer.
The list of attributes in a bitmap object are as follows:

10.11. ATTRIBUTES 45

* bitmap->width: the width of the bitmap. This should not be
changed after the bitmap is created, or unpredictable results
might occur.

* bitmap->height: the height of the bitmap. This should not
be changed after the bitmap is created, or unpredictable results
might occur.

* bitmap->ink: the colour for printing text with bitmap->print
or for drawing boxes with bitmap->box. This is intended to be
set directly by the developer before printing or drawing boxes.
Because of the limitations of drawing box patterns at speed, this
should only be changed for box drawing when bitmap->paper
is 0, The default for bitmap->ink is 3.

* bitmap->paper: the background colour for a text box created
with bitmap->print, or for “off” pixels with a box drawn with
bitmap->box. Because of the limitations of drawing box pat-
terns at speed, this should only be changed for box drawing
when bitmap->ink is 3, otherwise unpredictable results will oc-
cur. The default for bitmap->paper is 0.

* bitmap->font: the font to be used for printing text on this
bitmap. This defaults to NULL, so it must be set to a valid font
before attempting to use bitmap->print.

46

CHAPTER 10. THE BITMAP MODULE

Chapter 11

The Font Module

Most of the font functions are accessed through a function pointer in
the Font structure. The exceptions are the functions that create the
structure: new_Font and read_Font. As with other CGALIB graphical
modules, all widths must be multiples of 4 pixels.

11.1 new_Font

Declaration:

Font *new_Font (int first, int last, int width,
int height);

Example:

Font *font;
font = new_Font (32, 126, 4, 8);

This creates a new font and returns a pointer to it. The first and last
parameters specify the first and last ASCII codes that the font includes.
It is possible to define fonts that only include, for instance, upper case
alphabetic characters, or digits. The width and height parameters

48 CHAPTER 11. THE FONT MODULE

define the size of the characters in pixels. If you want to read a font
from disk, there is no need to use new_Font; use read_Font instead.

11.2 read Font

Declaration:
Font *read_Font (FILE *input, int version);
Example:

Font *font;

FILE *fh;

fh = fopen ("present.fnt", "rb");
font = read_Font (fh, 2);

fclose (fh);

Creates a font, reads its contents from an already open file, and returns
a pointer to that new font. The input parameter is the input file handle.
The version parameter is the version of CGALIB under which the font
was created. It should be 2, unless you are importing a font created
under CGALIB1, in which case it should be 1. CGALIB1 fonts are
fixed at 4x8 pixels, and therefore the saved fonts lack character size
information.

11.3 font->destroy

Declaration:

struct font {
void (*destroy) (Font *font);
}

Example:

11.4. FONT->CLONE 49

Font *font;

font = new_Font (32, 126, 4, 8);
/* ... use font ... */
font->destroy (font);

Destroys a font, freeing the memory that the font took up. Fonts should
always be destroyed when no longer needed, to prevent memory leaks.

11.4 font->clone

Declaration:

struct font {
Font *(*clone) (Font *font);
}

Example:

Font *font, *copy;
font = new_Font (32, 127, 4, 8);

/* ... make font ... */
copy = font->clone (font);
/* ... use fonts ... */

copy->destroy (copy);
font->destroy (font);

Creates a clone of the specified font, and returns a pointer to it. The
clone is an independent copy of the font; modifications made to the
clone do not affect the original font. This function is useful in order to
create or cache variants of fonts, such as those in a different colour, or
those with underlines or strikethrough.

11.5 font->write

Declaration:

50 CHAPTER 11. THE FONT MODULE

struct font {
int (*write) (Font *font, FILE *output);
}

Example:

Font *fonts[3];

FILE *fh;

int c;

for (c = 0; c < 3; ++c)
fonts[c] = new_Font (32, 126, 4, 8);

/* ... draw fonts ... */

fh = fopen ("fonts.dat", "wb");

for (¢ = 0; ¢ < 3; ++c)
fonts[c]->write (fonts([c], fh);

fclose (fh);

for (c = 0; c < 3; ++c)
fonts[c]->destroy (fontsl[cl);

Writes a font to an already open file. The example above creates three
fonts, and saves them to the same file. Fonts will be saved with a
version number of 2.

11.6 font->put

Declaration:

struct bitmap {
void (*put) (Font *font, Bitmap *bitmap, int code);
}

Example:

Screen *screen;
Bitmap *bitmap;
Font *font;

11.6. FONT->PUT 51

FILE *fh;
int ¢, x, y;

screen = new_Screen (CGALIB_MEDIUM, CGALIB_HIDDEN) ;
fh = fopen ("fntsheet.bsv", "rb");

screen->read (screen, CGALIB_SCREEN_FILE, fh);
fclose (fh);

font = new_Font (32, 126, 4, 8);
bitmap = new_Bitmap (4, 8);
for (c = 32; c < 127; ++c) {
X =c % 16;
y (c - 32) / 16;
screen->get (screen, bitmap, x, y, 4, 8);
font->put (font, bitmap, c);
}
bitmap->destroy (bitmap);

fh = fopen ("cstmfont.fnt", "wb");
font->write (font, fh);

fclose (fh);

font->destroy (font);
screen->destroy (screen);

Transfers a bitmap into a font character. The example above is al-
most a complete program: it loads a screen in BSAVE format, which
is assumed to have a block of 16x6 characters in the upper left, each
character of size 4x8. As each character is extracted into a bitmap,
that bitmap is transferred into a character using font->put. This is the
usual way to create a custom font, and would usually form part of an
asset generation program for a project.

52 CHAPTER 11. THE FONT MODULE

11.7 font->get

Declaration:

struct bitmap {
Bitmap *(*get) (Font *font, int code);
}

Example:

Font *font, *underline;
Bitmap *bitmap;

FILE *fh;

int c;

fh = fopen ("font.fnt", "rb");
font = read_Font (fh, 2);
fclose (fh);

underline = new_Font (font->first, font->last,
font->width, font->height);
for (c = font->first; c <= font->last; ++c) {
bitmap = font->get (font, c);
bitmap->box (bitmap,
0, font->height - 1,
font->width, 1,
CGALIB_SET);
underline->put (underline, bitmap, c);
bitmap->destroy (bitmap);
}

underline->destroy (underline);
font->destroy (font);

The extracts a character from the specified font and creates a new
bitmap out of it. It is the reverse of font->put. It is less often used

11.8. FONT->RECOLOUR 53

than font->put, but can be useful as a means of manipulating font
characters. The example above loads a font, applies an underline to
every character, transferring these modified characters into a new un-
derline font.

11.8 font->recolour

Declaration:

struct bitmap {
void (*recolour) (Font *font,
int ink, int paper);

}
Example:

Font *white, *magenta;

fh = fopen ("font.fnt", "rb");
white = read_Font (fh, 2);
fclose (fh);

magenta = white->clone (white);
magenta->recolour (magenta, 2, 3);

Takes a font assumed to be in colour 3 on a background of colour 0,
and applies an alternative colour set to it. The source font could be
printed in any colour by setting ink and paper attributes of the destina-
tion screen or bitmap before printing, but this is slow, as each character
is recoloured as it is printed. So instead, font->recolour allows an en-
tire font to be recoloured in advance. If the paper and ink colours of the
print destination are left at 3 and 0 respectively, the recoloured font will
be shown in its new colours.

The above example assumes a palette of black, cyan, magenta,
white. It loads a font assumed to be white-on-black, creates a clone of
it, and changes the colours of the cloned font to magenta on white.

54 CHAPTER 11. THE FONT MODULE

11.9 Attributes

The attributes of a font object are intended to be read-only. Here is a
list.

« first: the first character code in the font. For a full ASCII set,
this would be 32, the space.

» last: the last character code in the font. For a full ASCII set, this
would be 126, the tilde.

» width: the width of the font, which is always a multiple of 4.
» height: the height of the font.

» pixels: the pixel data. The format of this data is the same as the
pixel data of a number of bitmaps concatenated. It is technically
possible to manipulate fonts by setting these bytes directly, but it
is much easier to extract each character into a bitmap.

Chapter 12

The Keyboard Module

The keyboard module supports the 83-key keyboard layout. The ex-
tended keys of a 101-key keyboard are mapped on to their equivalents
on the 83-key keyboard. For example, on pressing the left cursor key
on a 101-key keyboard, the keyboard module will register this as the 4
on the numeric keypad, which is where the 83-key keyboards left cursor
function resides.

Most of the keyboard functions are accessed through a function
pointer in the KeyHandler structure. The exception is the function that
creates the structure: new_KeyHandler.

12.1 new_KeyHandler

Declaration:
KeyHandler *new_KeyHandler (void);
Example:

KeyHandler *keys;
keys = new_KeyHandler ();

56 CHAPTER 12. THE KEYBOARD MODULE

/* ... use key handler ... */
keys->destroy ();

Creates a new KeyHandler object and returns a pointer to it. If a Key-
Handler object already exists, a pointer to the existing KeyHandler is
returned instead; there can only be one KeyHandler in existence. The
KeyHandler completely takes over control of the keyboard from the
BIOS or any TSR program that might be currently handling the key-
board, so the keys that they look for (e.g. Ctrl-Alt-Del) will not be auto-
matically handled.

12.2 keyhandler->destroy

Declaration:

struct keyhandler {
void (*destroy) (void);
3

Example:

KeyHandler *keys;

keys = new_KeyHandler ();

/* ... use key handler ... */
keys->destroy ();

Destroys the KeyHandler when no longer needed, usually at the end
of a program. Control of the keyboard is handed back to whatever was
handling it before, e.g. the BIOS. Failure to destroy the KeyHandler
before closing the program will almost certainly freeze the computer, as
the keyboard interrupt will still be trying to use your keyboard handler.

12.3 keyhandler->key

Declaration:

12.4. KEYHANDLER->ANYKEY 57

struct keyhandler {

int (*key) (int scancode);
s
Example:

KeyHandler x*keys;

keys = new_KeyHandler ();

printf ("Press ENTER:");

while (! keys->key (KEY_ENTER));
printf ("\n");

while (keys->key (KEY_ENTER));
keys->destroy ();

Checks for the state of a particular key, returning 1 if the key is pressed,
or 0 if the key is not pressed. The parameter is the scancode for the key.
A full list of defined constants for the original XT keyboard is available
to save you looking up scancodes; they are listed in keyboard.h.

12.4 keyhandler->anykey

Declaration:

struct keyhandler {
int (*anykey) (void);

s

Example:

KeyHandler x*keys;

keys = new_KeyHandler ();
printf ("Press any key:");
while (! keys->anykey ());
printf ("\n");
keys->destroy ();

Checks to see if any key has been pressed. If a key was pressed, 1 is
returned. If no key was pressed, 0 is returned.

58 CHAPTER 12.

12.5 keyhandler->ascii

Declaration:

struct keyhandler {
int (*ascii) (void);

};
Example:

KeyHandler x*keys;
int ch;
keys = new_KeyHandler ();
printf ("Enter your name: ");
do {
keys->wait (0);
ch = keys->ascii Q;
if (ch >= " " && ch <= "™")
printf ("%c", ch);
} while (ch != 13);
printf ("\n");
keys->destroy ();

THE KEYBOARD MODULE

Returns the ASCII value of the last key pressed, or 0 if no key was
pressed. After calling this method, the value for the last key pressed is
reset to 0; this will also affect the anykey () and scancode () methods.
The value returned will take note of the Shift key and return upper case
characters or symbols as appropriate. It makes the assumption that
Caps Lock and Num Lock are off. There are ASCII approximations for

a few keys:
» <: 8 (same as Backspace)
* —: 9 (same as Tab)
« }:10
o 11

12.6. KEYHANDLER->SCANCODE 59

e Del: 127

This allows for implementation of the most rudimentary editing, but it is
probably better to use the scancode method if you need a more precise
reading of the keyboard.

12.6 keyhandler->scancode

Declaration:

struct keyhandler {
int (*scancode) (void);

};
Example:

KeyHandler *keys;
int sc;
keys = new_KeyHandler Q);
printf ("Press some keys (ESC ends):\n");
do {
keys->wait (0);
sc = keys->scancode ();
printf ("0x%02x ", sc);
} while (sc != KEY_ESC);
printf ("\n");
keys->destroy ();

Returns the scan code value of the last key pressed, or 0 if no key was
pressed. After calling this method, the value for the last key pressed is
reset to 0; this will also affect the anykey () and ascii() methods.

12.7 keyhandler->wait

Declaration:

60 CHAPTER 12. THE KEYBOARD MODULE

struct keyhandler {
void (*wait) (void);

}s;
Example:

KeyHandler x*keys;

keys = new_KeyHandler ();
printf ("Press any key:");
keys->wait ();

printf ("\n");
keys->destroy O ;

Waits until a key is pressed. You would then use the ascii or
scancode method to see what the key was.

Chapter 13

The Speaker Module

The Speaker module binds together two sub-modules, the Tune mod-
ule for music, and the Effect module for sound effects. It provides com-
mon services for both of them.

13.1 get_Speaker

Declaration:
Speaker *get_Speaker (void);
Example:

Speaker *speaker;

speaker = get_Speaker ();
/* ... make noises ... x/
speaker->destroy ();

If no Speaker object exists, this method creates a new one. A pointer
to the Speaker object is then returned. This is done internally by the
Effect and Tune modules, but you will need to call this method in your
own program in order to get a reference to the Speaker object in order

62 CHAPTER 13. THE SPEAKER MODULE

to destroy it, as neither the Effect nor Tune modules will destroy the
Speaker object for you; they do not know when you are finished making
noises.

13.2 speaker->destroy

Declaration:

struct speaker {
void (*destroy) (void);
}

Example:

Speaker *speaker;

speaker = get_Speaker ();
/* ... make noises ... x/
speaker->destroy Q) ;

This destroys the speaker object when you are done making noises,
usually just before your program finishes. This frees up the memory
used by the Speaker library.

13.3 speaker->writeint

Declaration:

struct speaker {
int (*writeint) (int *value, FILE *output);

}
Example:

Speaker *speaker;
FILE *fh;

13.4. SPEAKER->READINT 63

int value;

speaker = get_Speaker ();

value = 24;

fh = fopen ("pitch", "wb");
speaker->writeint (&value, fh);
fclose (fh);

speaker->destroy Q) ;

Writes a single-byte integer to an already open file. This is used inter-
nally by both the Effect and Tune modules, when writing sound effects
and tunes to files.

13.4 speaker->readint

Declaration:

struct speaker {
int (*readint) (int *value, FILE *output);
}

Example:

Speaker *speaker;

FILE *fh;

int value;

speaker = get_Speaker ();

fh = fopen ("pitch", "rb");
speaker->readint (&value, fh);

fclose (fh);

/* ... do something with value ... */
speaker->destroy Q) ;

Reads a single-byte integer from an already open file. This is used
internally by both the Effect and Tune modules, when reading sound
effects and tunes from files.

64 CHAPTER 13. THE SPEAKER MODULE

13.5 Attributes

A single attribute is stored in the Speaker object: frequencies. This is
a pointer to an array of frequencies for individual notes, and is used by
both the Effect and Tune modules. It is not intended that a developer
should change these, and it is rare that a developer would want to even
refer to them. There are 108 values in this array.

Chapter 14

The Effect Module

The Effect module handles sound effects through the PC speaker. It
is a part of the Speaker module. If no Speaker object exists when the
Effect module is first used, a Speaker object is created. The devel-
oper must remember, if they did not create the Speaker object them-
selves, to obtain a pointer to it with get_Speaker and destroy it when
all speaker output is done.

14.1 new_Effect

Declaration:
Effect *new_Effect (void);
Example:

Effect xeffect;

effect = new_Effect ();

/* ... define and use sound effect ... */
effect->destroy (effect);

66 CHAPTER 14. THE EFFECT MODULE

Creates a sound effect object. If no Speaker object exists, it will be
created here. The effect can be defined by loading it from a file, or by
setting the effects attributes directly (see later).

14.2 effect->destroy

Declaration:

struct effect {
void (*destroy) (Effect *effect);
}

Example:

Effect xeffect;

effect = new_Effect ();

/* ... define and use sound effect ... */
effect->destroy (effect);

Destroys a sound effect when it is no longer needed. This does not
destroy the Speaker object; that must be done separately.

14.3 effect->read

Declaration:

struct effect {
int (*read) (Effect *effect, FILE *input);
}

Example:

Effect xeffect;
FILE *fh;
effect = new_Effect ();

14.4. EFFECT->WRITE 67

fh = fopen ("pewpew.eff", "rb");
effect->read (effect, fh);
fclose (fh);

/* ... use sound effect ... *x/
effect->destroy (effect);

Reads the sound effect from an already open file. This is how a pro-
gram would load sound effects if they had been bundled in an asset
file.

14.4 effect->write

Declaration:

struct effect {
int (*write) (Effect *effect, FILE *output);
}

Example:

Effect *effect;

FILE *fh;

effect = new_Effect ();

/* ... define sound effect ... */
fh = fopen ("pewpew.eff", "wb");
effect->write (effect, fh);
fclose (fh);

effect->destroy (effect);

Writes the sound effect to an already open file. This is how sound
effects would be written to an asset file, ready to be loaded by the main
program in a project.

14.5 effect->play

Declaration:

68 CHAPTER 14. THE EFFECT MODULE

struct effect {
void (*play) (Effect *effect);
}

Example:

Effect *effect;

FILE *fh;

effect = new_Effect ();

fh = fopen ("pewpew.eff", "rb");
effect->read (effect, fh);
fclose (fh);

effect->play (effect);
effect->destroy (effect);

Plays the sound effect. This is done synchronously; control returns
from play() when the sound effect is finished.

14.6 Attributes

The sound effect is defined by directly modifying its attributes. All val-
ues are integers in the range 0..255, and are as follows:

» pattern: the basic sound pattern used for the sound effect.
There are defined constants representing each of the valid val-
ues:

EFFECT_NOISE: noise made from random pitches
EFFECT_FALL: a falling tone
EFFECT_RISE: a rising tone

EFFECT_STEP_DOWN: a single tone, falling every repetition

EFFECT_STEP_UP: a single tone, rising every repetition

» repetitions: the number of repetitions of the sound effect.

14.6. ATTRIBUTES 69

* low: the lowest tone used in the sound effect. The scale is in
semitones, with 0 starting at the bottom C of an organ keyboard,
middle C being 24.

» high: the highest tone used in the sound effect.

» duration: the duration of a single repetition in clock ticks. A
clock tick is 1% of a second.

 pause: the duration of a pause between repetitions, in clock ticks.

As an example, the code below will define and play an effect with a
“pewpew” noise, as commonly used for laser fire in science fiction set-
tings:

Effect *pewpew;

pewpew = new_Effect ();
pewpew->pattern = EFFECT_FALL;
pewpew->repetitions = 2;
pewpew->low = 0;

pewpew->high = 60;
pewpew->duration = 3;
pewpew->pause = 0;
pewpew->play (pewpew) ;
pewpew->destroy (pewpew) ;

70

CHAPTER 14. THE EFFECT MODULE

Chapter 15

The Tune Module

The Tune module works by keeping the notes short (about %8 second)
and achieves the impression of harmony by using arpeggios of these
brief notes. Each of these notes is held in a Note object, which are
brought together within a Tune object.

15.1 new_Tune

Declaration:
Note *new_Note (void);
Example:

Tune *tune;

tune = new_Tune ();

/* ... do things with tune ... */
tune->destroy (tune);

Creates a new tune object, whose notes can be added by the program,
or loaded from previously saved data in a file. Creating the tune object
will create a speaker object if one does not exist; destroying the tune
object will not destroy the speaker object.

72 CHAPTER 15. THE TUNE MODULE

15.2 new_Note

Declaration:
Note *new_Note (int pitch, int duration);
Example:

Note *note;

note = new_Note (24, 12);

/* ... do things with note ... */
note->destroy (note);

Creates a new note object. The example creates a note of middle

C (pitch 24) that lasts for about % of a second (duration 12). Notes

are played back staccato, so this note would sound for about % of a
11

second, with an {3 pause afterwards. You can also build up arpeggios

in this time; see tune->add for more details.

15.3 note->destroy

Declaration:

struct note {
void (*destroy) (Note *note);

}
Example:

Note *note;

note = new_Note (24, 12);

/* ... do *not* add note to a tune ... */
note->destroy (note);

Destroys a note. It is important not to use this method after the note
has been added to a Tune object. It is rare that you would want to
create a note at all if you were not intending to add it to a tune, but
note->destroy is needed internally to allow tune->destroy to de-
stroy the notes that were added to a tune.

15.4. TUNE->DESTROY 73

15.4 tune->destroy

Declaration:

struct tune {
void (*destroy) (Tune *tune);

}
Example:

Tune *tune;

tune = new_Tune ();

/* ... do things with tune ... */
tune->destroy (tune);

Destroys a tune and all the notes that it contains. The devel-
oper shouldn’'t try to destroy individual notes used in a tune, as
tune->destroy will have already destroyed them.

15.5 tune->add

Declaration:

struct tune {
void (*add) (Tune *tune, Note *note);

}
Example:

int frere[32][2] = {

{24, 12}, {26, 12}, {28, 12}, {24, 12},

{24, 12}, {26, 12}, {28, 12}, {24, 12},

{28, 12}, {29, 12}, {31, 24},

{28, 12}, {29, 12}, {31, 24},

{31, 6}, {33, 6}, {31, 6}, {29, 6} {28, 12}, {24, 12},
{31, 6}, {33, 6}, {31, 6}, {29, 6} {28, 12}, {24, 12},
{24, 12}, {19, 12}, {24, 24},

74 CHAPTER 15. THE TUNE MODULE

{24, 12}, {19, 12}, {24, 24}
};
Tune *tune;
Note *note;
int n;
tune = new_Tune ();
for (n = 0; n < 32; ++n)
tune->add (tune, new_Note (frere[n][0], frerel[n][1]));
tune->play (tune);
tune->destroy (tune);

Adds a single note to a tune. The example above prepares and plays a
monophonic version of the traditional tune Frére Jacques. Polyphonic
music is emulated by using arpeggios. To play multiple notes at the
same time, give the first note its proper duration, but give subsequent
notes in the chord a duration of 0. These will sound as soon after the
first note as possible. Assuming that so many notes can fit into the
desired duration, the current chord will last for the duration before the
next group of notes is sounded. The following example gives part of
Pachelbel’s famous Canon in D:

int canon[24][2] = {
{26, 12}, {21, 12}, {23, 12}, {18, 12},
{19, 12}, {14, 12}, {19, 12}, {21, 12},
{26, 12}, {42, o}, {21, 12}, {40, 0},
{23, 12}, {38, 0}, {18, 12}, {37, 0%,
{19, 12}, {35, 0}, {14, 12}, {33, 0},
{19, 12}, {35, 0}, {21, 12}, {37, 0O}

};

Tune *tune;

Note *note;

int n;

tune = new_Tune ();

for (n = 0; n < 24; ++n)
tune->add (tune, new_Note (canon[n][0], canon[n][1]));

tune->play (tune);

15.6. TUNE->READ 75

tune->destroy (tune);

Pay attention to the notes with 0 duration in the array - these are
sounded along with the previous note.

15.6 tune->read

Declaration:

struct tune {
int (*read) (Tune *tune, FILE *input);
}

Example:

Tune *tune;

FILE *fh;

tune = new_Tune ();

fh = fopen ("music.tun", "rb");
tune->read (tune, fh);

fclose (fh);

tune->play (tune);
tune->destroy (tune);

Reads a tune from an already open file. This allows music for a project
to be packed into an asset file along with the graphics, fonts and sound
effects.

15.7 tune->write

Declaration:

struct tune {
int (*write) (Tune *tune, FILE *output);
}

76 CHAPTER 15. THE TUNE MODULE

Example:

int frere[32][2] = {
{24, 12}, {26, 12}, {28, 12}, {24, 12},
{24, 12}, {26, 12}, {28, 12}, {24, 12},
{28, 12}, {29, 123}, {31, 24},
{28, 12}, {29, 12}, {31, 24},
{31, 6}, {33, 6}, {31, 6}, {29, 6} {28, 12}, {24, 12},
{31, 6}, {33, 6}, {31, 6}, {29, 6} {28, 12}, {24, 12},
{24, 12}, {19, 12}, {24, 24},
{24, 12}, {19, 12}, {24, 24}
};
Tune *tune;
Note *note;
int n;
FILE *fh;
tune = new_Tune ();
for (n = 0; n < 32; ++n)
tune->add (tune, new_Note (frere[n][0], frere[n][1]));
fh = fopen ("frere.tun", "wb");
tune->write (tune, fh);
fclose (fh);
tune->destroy (tune);

Writes a tune to an already open file. The above example builds up the
Frere Jacques tune from an array and then saves it.

15.8 tune->play

Declaration:

struct tune {
int (*play) (Tune *tune);
}

Example:

15.9. ATTRIBUTES 77

Tune *tune;

FILE *fh;

tune = new_Tune ();

fh = fopen ("frere.tun", "rb");
tune->read (tune, fh);

fclose (fh);

tune->play (tune);
tune->destroy (tune);

Plays a tune. Initially the tune is played from the beginning. If the user
presses a key, the tune will stop and control will return. If tune->play
is called again, the tune will resume from where it left off. If tune->play
is called after the tune has finished, playback will start again from the
beginning.

15.9 Attributes

The Note object contains the following attributes:

 pitch: the pitch of the note. This is in the range of 0..255, with 0
being the bottom C of an organ keyboard. It is possible to modify
this value before and after the note has been added to a tune.

» duration: the duration of the note, in clock ticks, which are about
%8 of a second. The value can range from 0 to 255. A sensible
value for a quarter note or crotchet would be 12.

» next: a pointer to the next note in a tune. Once the note has
been added to a tune, and further notes added afterwards, this
pointer is used to link the list of notes together.

The Tune object contains the following attributes:

* notes: a pointer to the first note in the tune. The note’s next
attribute points to the next note, and each note’s next attribute
from there forward points to the following note, right up till the

78

CHAPTER 15. THE TUNE MODULE

end of the tune. The final note’s next attribute will be NULL. A
developer familiar with linked lists can cut, copy and splice tunes
together by inserting and removing sections of this linked list.

note: a pointer to the current note being played. If NULL, the
playback has not started or has finished. Any other value is a
pointer to the last note played. This pointer can be changed to
point to any of the notes in the notes linked list, or alternatively
it can be set to NULL so that the next playback will start from the
beginning of the tune.

Chapter 16

The Demonstration Game

The demonstration game, just called DEMO.EXE, is an implementation
of the classic Droids game. Your aim in this game is to survive for as
long as possible, while being chased by a host of droids in an arena. If
a droid catches you, then you die and the game is over. A score is kept
based on the number of droids destroyed.

The key tool for defeating the droids is their own stupidity. They
head straight for the player without looking where they are going. If two
droids collide, they are both destroyed, leaving a pile of debris behind.
If other droids crash into the debris, they are also destroyed.

Sometimes the player is cornered and there is no escape. Well,
there is: the teleport feature. You can teleport at any time to a random
part of the arena. But this comes with a risk and a cost. The risk is
that you teleport right into the path of a droid which will then kill you.
The cost is a score penalty, equal to half the number of droids that the
level started with, every time you teleport. So use the teleport feature
as sparingly as possible!

The game uses eight way movement. The directional controls are
the keypad with or without Num Lock. You can also use the keys Q,
W, E, A, D, Z, X, C for movement if you prefer, with S being an extra
“down” key. Space teleports. Any other key lets the droids move while

80 CHAPTER 16. THE DEMONSTRATION GAME

the player stands still - useful if the player is shielded by debris and
wants the droids to collide with it and cause their own destruction.

If you are playing on a portable monochrome screen, or you just
dislike the game’s colours, you can launch it in monochrome mode
using the -m parameter at the command line. This will use dithering in
640x200 monochrome mode to give a black and white display.

Chapter 17

The Asset Generation
Utilities

There are four asset generation utilities supplied with CGALIB that are
suitable for small projects. Makebit is the bitmap editor, Makefont is the
font editor, Maketune is the music editor, and Makefx is the sound-effect
generator.

17.1 Makebit

Makebit, the bitmap editor, supports up to 24 bitmaps in a file. Bitmap
sizes can be from 4x2 pixels to 24x24. The bitmaps are edited by
moving a cursor around an expanded pixel grid. The keys to operate
the editor are as follows:

+ Cursor keys: move the cursor in the editing grid.
» Page up/down: go to the previous or next bitmap.

+ 0..3: paint the pixel under the cursor in the desired colour.

82 CHAPTER 17. THE ASSET GENERATION UTILITIES

« SPACE: paint the cursor pixel in the last used colour.
* V: flip the bitmap vertically.

 H: flip the bitmap horizontally.

* R: rotate the bitmap clockwise (square bitmaps only).
» SHIFT+R: rotate the bitmap anticlockwise (ditto).

+ C: copy the current bitmap to the clipboard.

+ P: paste the copied bitmap over the current one.

« X: clear the current bitmap to the background colour.
« F: fill the bitmap with the last used colour.

+ INS: add a new bitmap at the current position.

» DEL: delete the current bitmap.

+ [and]: change the foreground palette.

+ { and }: change the background colour.

+ ESC: save and quit.

The following function will load the bitmaps into an array. You need
to make sure that the bitmaps array you pass to it contains at least
as many elements as the file has bitmaps. For simplicity, this function
doesn’t check the existence of the file.

/* quick and dirty bitmap load function. */
int load_bitmaps (Bitmap **bitmaps, char *filename)
{

FILE *fp; /* file pointer */

char header[8]; /* bitmap file header */

int ¢ = 0; /* counter */

Bitmap *bit; /* pointer to temporary bitmap */

17.2. MAKEFONT 83

/* open the file, read past the header. */
fp = fopen (filename, "rb");
fread (header, 8, 1, fp);

/* read as many bitmaps as the file contains. */
while ((bit = read_Bitmap (fp)))
bitmaps[c++] = bit;

/* return */
fclose (fp);
return 1;

}

/* example usage */
Bitmap *bitmaps[24];
load_bitmaps (&bitmaps, "filename.bit");

If you need more than 24 bitmaps, or bitmaps larger than the 24x24
pixels that the utility supports, then the recommended course is to
put a collage of all the bitmaps onto one or more 320x200 images,
saved in BSAVE format. Then write a small utility that loads this im-
age straight into screen memory, extracts the required bitmaps (using
screen->get), and saves those bitmaps to an asset data file for your
project to load. You could also include any fonts, music, sound effects
or other data in that asset file. An example of how this works is in the
game Team Droid, source code for which is available on the Cyningstan
web site.

17.2 Makefont

Makefont, the font editor. This supports fonts of size 4x8 pixels, with up
to 255 characters. Each character is edited by moving a cursor around
an expanded pixel grid. The keys to operate makefont are:

84

CHAPTER 17. THE ASSET GENERATION UTILITIES

Cursor keys: move the cursor in the editing grid.

Page up/down: go to the previous or next character.

0..3: paint the pixel under the cursor in the desired colour.
SPACE: paint the cursor pixel in the last used colour.

C: copy the current character to the clipboard.

P: paste the copied character over the current one.

X: clear the current character to the background colour.

F: fill the bitmap with the last used colour.

[and]: change the foreground palette.

{ and }: change the background colour.

ESC: save and quit.

The following function will load the saved font ready for use in your own
program:

/* quick and dirty font load function. */
Font *load_font (char *filename)

{

FILE *fp; /* file pointer */

char header([8]; /* bitmap file header */
int ¢ = 0; /* counter */

Font *font; /* pointer to loaded font */

/* open the file, read past the header. */
fp = fopen (filename, "rb");
fread (header, 8, 1, fp);

/* read the font from the input file */
font = read_Font (fp, header[5] - ’0’);

17.2. MAKEFONT 85

/* return */
fclose (fp);
return font;

}

/* example usage */
Font *font;
font = load_font ("example.fnt");

If you need to save multiple fonts in a file, or you want to create fonts
that are sizes other than 4x8 pixels, then you will need to use an alter-
native method: draw the characters onto an image file with a program
like PCPaint, save the image in BSAVE format, and have your asset
generation routine create the font by getting them into bitmaps and
putting them into the font. The following function loads an 8x8 font
from an image file, where the character codes are assumed to range
from 32 to 127 and are arranged in six rows of sixteen characters:

Font #*makefont (void)
{
FILE *fp; /* input file pointer */
Screen *scr; /* screen to load image into */
Font *fnt; /* the new font file */
Bitmap *bit; /* temporary bitmap for character */
int c; /* character counter */

/* make the screen object and load it in */

scr = new_Screen (CGALIB_MEDIUM, CGALIB_HIDDEN);
fp = fopen ("image.bsv", "rb");

scr->read (scr, CGALIB_SCREEN_FILE, fp);

fclose (fp);

/* make the font and copy the characters */
fnt = new_Font (32, 127, 8, 8);

86

CHAPTER 17. THE ASSET GENERATION UTILITIES

for (c = 32; c <= 127; ++c) {
bit = scr->get (scr,
8 x (¢ h 16), 8 *x (c / 16) - 16,
8, 8);
fnt->put (fnt, bit, c);
bit->destroy (bit);
}

/* destroy the screen and return the font */
scr->destroy (scr);
return fnt;

17.3 Maketune

Maketune is the music editor. It allows you to create beeper music
and save it in a file. The tune is displayed as rows of notes to be

simu

ltaneously played, starting with the duration of the whole chord

in clock ticks. While editing the music, you can play it back from the
current cursor position to the end of the file. Moving the cursor to the

start

of the tune allows playback of the whole tune. The keys to operate

the program are:

Up/Down: move the cursor highlight bar up and down the tune.
The cursor highlights the current note row in white on magenta.
When editing a line, these instead increase or decrease the cur-
rent note by a semitone.

PgUp/PgDn: view the previous or next page of notes.
Home/End: go to the start or end of the tune.
INS: Insert a set of simultaneous notes at the cursor position.

DEL: Delete the set of simultaneous notes at the cursor position.

17.3. MAKETUNE 87

ENTER: Alter the values of the notes at the cursor position.
SPACE: Play the tune, starting at the cursor position.

M: Set a copy marker for notes to be pasted. When not high-
lighted by the cursor, these notes will be highlighted in black on
cyan.

C: copy the notes from the copy marker to the current cursor
positon. The copy marker and the cursor will both move down,
allowing long sections of music to be copied by repeatedly press-
ing C.

[: show accidentals as flats.
]: show accidentals as sharps.

ESC: save and quit. When editing a line, this finishes editing;
if in the process of adding a note to the line, that note will be
discarded.

The tune can be loaded into your program with the following routine:

/* quick and dirty tune loader */
static Tune *load_tune (char *filename)

{

}

Tune *tune; /* the new tune */
tune = new_Tune ();

fp = fopen (filename, "rb");
fread (header, 8, 1, fp);
tune->read (tune, fp);

fclose (fp);

return tune;

/* example usage */
Tune *tune;

tune

= load_tune ("example.tun");

88 CHAPTER 17. THE ASSET GENERATION UTILITIES

17.4 Makefx

Makefx is the sound effect editor. It allows you to create up to twelve
sound effects, and save them in a file. The program allows you to play
the sound effects to see if they are to your liking. The keys to operate
the program are:

» Up/Down: move the cursor highlight bar up and down the effect
list.

+ INS: Insert a sound effect at the highlighted (empty) slot.
« DEL: Delete the sound effect at the highlighted slot.

+ ENTER: Alter the values of the sound effect at the highlighted
slot.

» SPACE: Play the sound effect at the highlighted slot.
+ C: copy the current sound effect to the clipboard.

+ P: paste the copied sound effect over the current one.
+ X: clear the current sound effect to the default values.

+ ESC: save and quit.

These sound effects can be loaded into your program with a function
like the following:

/* quick and dirty sound effect loader */
static void load_effects (Effect **effects, char *filename)
{

FILE *fp; /* file pointer */

char header[8]; /* effect file header */

int c; /* counter */

/* attempt to open the file, and read and verify the header */

17.4. MAKEFX 89

fp = fopen (filename, "rb");
fread (header, 8, 1, fp);

/* read the effects */

c = 0;
while (c < 12 && (effects[c]->read (effects[c]l, fp)))
++C;

while (c < 12)
effects[c++] = NULL;

/* return */
fclose (fp);
}

/* example usage */
Effect *effects[12];
load_effects (effects, "example.eff");

90

CHAPTER 17. THE ASSET GENERATION UTILITIES

Chapter 18

Linux Compilation

There is limited support for compiling CGALIB into a Linux library
archive. This is not intended to create production quality linux versions
of CGALIB projects, but instead allows the projects to be compiled un-
der Linux in order to use the superior debugging facilities that Linux
offers, e.g. gnudb and valgrind. It was created after the author spent
too much time debugging crashes and memory leaks in a DOS project,
a task that becomes almost trivial with the Linux debug tools.

The Linux version of CGALIB emulates a CGA screen in a 640x400
window. It supports full emulation of CGA mode 4 and 5, giving access
to all the colour palettes. It does not support 640x200 monochrome
mode. A number of limitations prevent the Linux version of CGALIB
from being suitable for production-quality Linux projects:

1. There is no support for maximising or minimising the CGA win-
dow.

2. The window is not redrawn if it becomes obscured, or if the user
switches to another workspace and back again.

3. Sound is not supported at all.

92 CHAPTER 18. LINUX COMPILATION

The intention of Linux compilation is purely as a debug tool, to en-
sure that memory leaks and memory access errors that DOS debug
tools would miss can be easily found. Once a project is free of these
bugs, it should be compiled under DOS. If the developer wishes to re-
lease native Linux (or Windows or Mac) versions of their DOS CGALIB
projects, then they should take advantage of DOSBox’s licence which
allows DOSBox to be bundled with DOS projects for easy installation
under modern operating systems.

Chapter 19

Possible Future
Developments

CGALIB is distributed in a complete state. But there are some possibil-
ities for future development. Some of the ideas that might be taken up
in future developments are:

Clipping on scr->put and bit->put operations. This will allow
source bitmaps to overlap the edge of the destination bitmap,
so that sprites can be shown leaving the visible play area more
cleanly.

Support in the font editor for font sizes other than 4x8.

Proper support for software sprites. This would include automatic
application of masks, frames of animation, and sprite rotation.
This would enable CGALIB to be used for action games, or at
least give some animation to liven up turn-based games.

Conversion to assembly. Some of the functions are still slow on
older systems such as a 4.77 MHz 8088-based PC. Although the
off-screen graphics manipulation features help to mitigate this, it

94 CHAPTER 19. POSSIBLE FUTURE DEVELOPMENTS

would be nice to speed everything up by converting some or all
of the functions to assembly language.

The following ideas are not possibilities for future development, as they
go beyond the use case of CGALIB or nullify any speed advantage over
using a compiler’s own graphics library:

» Full EGA/VGA graphics mode support. CGALIB obtains part of
its speed advantage by being able to make assumptions about
the screen memory layout.

+ Support for 16-colour pseudo graphics at 160x100 resolution. It
would be attractive to have support for this mode, but for the
same reason as the idea above, that would be better imple-
mented as a separate library.

ZICYNINGSTAN| [ZICYNINGSTAN| [KICYNINGSTAN|

